You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.
Coding theory is still a young subject. One can safely say that it was born in 1948. It is not surprising that it has not yet become a fixed topic in the curriculum of most universities. On the other hand, it is obvious that discrete mathematics is rapidly growing in importance. The growing need for mathe maticians and computer scientists in industry will lead to an increase in courses offered in the area of discrete mathematics. One of the most suitable and fascinating is, indeed, coding theory. So, it is not surprising that one more book on this subject now appears. However, a little more justification of the book are necessary. A few years ago it was and a little more history remarked at ...
None
The problems of constructing covering codes and of estimating their parameters are the main concern of this book. It provides a unified account of the most recent theory of covering codes and shows how a number of mathematical and engineering issues are related to covering problems.Scientists involved in discrete mathematics, combinatorics, computer science, information theory, geometry, algebra or number theory will find the book of particular significance. It is designed both as an introductory textbook for the beginner and as a reference book for the expert mathematician and engineer.A number of unsolved problems suitable for research projects are also discussed.
This is the first volume of the second edition of the standard text on design theory. Since the first edition there has been extensive development of the theory and this book has been thoroughly rewritten and extended during that time. In particular the growing importance of discrete mathematics to many parts of engineering and science have made designs a useful tool for applications. It is suitable for advanced courses and as a reference work, not only for researchers in discrete mathematics or finite algebra, but also for those working in computer and communications engineering and other mathematically oriented disciplines. Exercises are included throughout, and the book concludes with an extensive and updated bibliography of well over 1800 items.
This is the second edition of the standard text on design theory. Exercises are included throughout, and the book concludes with an extensive and updated bibliography of well over 1800 items.
These notes are based on lectures given in the semmar on "Coding Theory and Algebraic Geometry" held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new ...
A self-contained account suited for a wide audience describing coding theory, combinatorial designs and their relations.
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence