You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Each volume in the Notre Dame Series on Quantitative Methodology features leading methodologists and substantive experts who provide instruction on innovative techniques designed to enhance quantitative skills in a substantive area. This latest volume focuses on the methodological issues and analyses pertinent to understanding psychological data from a dynamical system perspective. Dynamical systems analysis (DSA) is increasingly used to demonstrate time-dependent variable change. It is used more and more to analyze a variety of psychological phenomena such as relationships, development and aging, emotional regulation, and perceptual processes. The book opens with the best occasions for usin...
No detailed description available for "Analysis of Change".
Newer statistical models, such as structural equation modeling and hierarchical linear modeling, require large sample sizes inappropriate for many research questions or unrealistic for many research arenas. How can researchers get the sophistication and flexibility of large sample studies without the requirement of prohibitively large samples? This book describes and illustrates statistical strategies that meet the sophistication/flexibility criteria for analyzing data from small samples of fewer than 150 cases. Contributions from some of the leading researchers in the field cover the use of multiple imputation software and how it can be used profitably with small data sets and missing data;...
The volume addresses major features in empirical social research from methodological and theoretical perspectives. Prominent researchers discuss central problems in empirical social research in a theory-driven way from political science, sociological or social-psychological points of view. These contributions focus on a renewed discussion of foundations together with innovative and open research questions or interdisciplinary research perspectives.
This book covers the following subjects: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). It presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, ...
None
None