You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
There is increasing recognition that low-cost, high capacity processes for the conversion of biomass into fuels and chemicals are essential for expanding the utilization of carbon neutral processes, reducing dependency on fossil fuel resources, and increasing rural income. While much attention has focused on the use of biomass to produce ethanol via fermentation, high capacity processes are also required for the production of hydrocarbon fuels and chemicals from lignocellulosic biomass. In this context, this book provides an up-to-date overview of the thermochemical methods available for biomass conversion to liquid fuels and chemicals. In addition to traditional conversion technologies such as fast pyrolysis, new developments are considered, including catalytic routes for the production of liquid fuels from carbohydrates and the use of ionic liquids for lignocellulose utilization. The individual chapters, written by experts in the field, provide an introduction to each topic, as well as describing recent research developments.
In this book we have collected a series of state-of-the art papers written by specialists in the field of ionic liquid crystals (ILCs) to address key questions concerning the synthesis, properties, and applications of ILCs. New compounds exhibiting ionic liquid crystalline phases are presented, both of calamitic as well as discotic type. Their dynamic and structural properties have been investigated with a series of experimental techniques including differential scanning calorimetry, polarized optical spectroscopy, X-ray scattering, and nuclear magnetic resonance, impedance spectroscopy to mention but a few. Moreover, computer simulations using both fully atomistic and highly coarse-grained force fields have been presented, offering an invaluable microscopic view of the structure and dynamics of these fascinating materials.
None
None