You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This exploration of combinatorics and knot theory is geared toward advanced undergraduates and graduate students. The author, Louis H. Kauffman, is a professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. Kauffman draws upon his work as a topologist to illustrate the relationships between knot theory and statistical mechanics, quantum theory, and algebra, as well as the role of knot theory in combinatorics. Featured topics include state, trails, and the clock theorem; state polynomials and the duality conjecture; knots and links; axiomatic link calculations; spanning surfaces; the genus of alternative links; and ribbon knots and the Arf invariant. Key concepts are related in easy-to-remember terms, and numerous helpful diagrams appear throughout the text. The author has provided a new supplement, entitled "Remarks on Formal Knot Theory," as well as his article, "New Invariants in the Theory of Knots," first published in The American Mathematical Monthly, March 1988.
This invaluable book is an introduction to knot and link invariants as generalised amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas.The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and P...
This book is an introductory explication on the theme of knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of the knot theory, coupled with a quantum statistical frame work create a context that naturally and powerfully includes an extraordinary range of interelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward the knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related with and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics, knots in dynamical systems.
This book constitutes a review volume on the relatively new subject of Quantum Topology. Quantum Topology has its inception in the 1984/1985 discoveries of new invariants of knots and links (Jones, Homfly and Kauffman polynomials). These invariants were rapidly connected with quantum groups and methods in statistical mechanics. This was followed by Edward Witten's introduction of methods of quantum field theory into the subject and the formulation by Witten and Michael Atiyah of the concept of topological quantum field theories.This book is a review volume of on-going research activity. The papers derive from talks given at the Special Session on Knot and Topological Quantum Field Theory of the American Mathematical Society held at Dayton, Ohio in the fall of 1992. The book consists of a self-contained article by Kauffman, entitled Introduction to Quantum Topology and eighteen research articles by participants in the special session.This book should provide a useful source of ideas and results for anyone interested in the interface between topology and quantum field theory.
This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas.The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems.In this new edition, an article on Virtual Knot Theory and Khovanov Homology has beed added.
On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial. Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.
This volume contains the proceedings of the ICTS program Knot Theory and Its Applications (KTH-2013), held from December 10–20, 2013, at IISER Mohali, India. The meeting focused on the broad area of knot theory and its interaction with other disciplines of theoretical science. The program was divided into two parts. The first part was a week-long advanced school which consisted of minicourses. The second part was a discussion meeting that was meant to connect the school to the modern research areas. This volume consists of lecture notes on the topics of the advanced school, as well as surveys and research papers on current topics that connect the lecture notes with cutting-edge research in the broad area of knot theory.
This volumes provides a comprehensive review of interactions between differential geometry and theoretical physics, contributed by many leading scholars in these fields. The contributions promise to play an important role in promoting the developments in these exciting areas. Besides the plenary talks, the coverage includes: models and related topics in statistical physics; quantum fields, strings and M-theory; Yang-Mills fields, knot theory and related topics; K-theory, including index theory and non-commutative geometry; mirror symmetry, conformal and topological quantum field theory; development of integrable systems; and random matrix theory.
This volume contains a collection of papers, written by physicists, computer scientists, and mathematicians, from the Conference on Representation Theory, Quantum Field Theory, Category Theory, and Quantum Information Theory, which was held at the University of Texas at Tyler from October 1-4, 2009. Quantum computing is a field at the interface of the physical sciences, computer sciences and mathematics. As such, advances in one field are often overlooked by practitioners in other fields. This volume brings together articles from each of these areas to make students, researchers and others interested in quantum computation aware of the most current advances. It is hoped that this work will stimulate future advances in the field.
This volumes provides a comprehensive review of interactions between differential geometry and theoretical physics, contributed by many leading scholars in these fields. The contributions promise to play an important role in promoting the developments in these exciting areas. Besides the plenary talks, the coverage includes: models and related topics in statistical physics; quantum fields, strings and M-theory; Yang-Mills fields, knot theory and related topics; K-theory, including index theory and non-commutative geometry; mirror symmetry, conformal and topological quantum field theory; development of integrable systems; and random matrix theory. Sample Chapter(s). Chapter 1: Yangian and App...