You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This thesis addresses optimal control of discrete-time switched linear systems with application to networked embedded control systems (NECSs). Part I focuses on optimal control and scheduling of discrete-time switched linear systems. The objective is to simultaneously design a control law and a switching (scheduling) law such that a cost function is minimized. This optimization problem exhibits exponential complexity. Taming the complexity is a major challenge. Two novel methods are presented to approach this optimization problem: Receding-horizon control and scheduling relies on the receding horizon principle. The optimization problem is solved based on relaxed dynamic programming, allowing...
The Second Shell Process Control Workshop covers the proceedings of a workshop of the same name, held in Houston, Texas on December 12-16, 1988. The said workshop seeks to improve the communication process between academic researchers, industrial researchers, and the engineering community in the field of process control, and in turn improve understanding of the nature of the control problems. The book covers topics such as automatic tuning and adaptive control; an operator control theory approach to the shell standard control problem; discrete time-adaptive predictive control; and the designing of a control system. Also included are topics such as optimal control and model identification; fundamental process control; statistical process control; and interfaces with process control. The text is recommended for researchers and practitioners in the field of engineering who would like to know more about process control and modeling.
Sifting through the variety of control systems applications can be a chore. Diverse and numerous technologies inspire applications ranging from float valves to microprocessors. Relevant to any system you might use, the highly adaptable Control System Fundamentals fills your need for a comprehensive treatment of the basic principles of control system engineering. This overview furnishes the underpinnings of modern control systems. Beginning with a review of the required mathematics, major subsections cover digital control and modeling. An international panel of experts discusses the specification of control systems, techniques for dealing with the most common and important control system nonlinearities, and digital implementation of control systems, with complete references. This framework yields a primary resource that is also capable of directing you to more detailed articles and books. This self-contained reference explores the universal aspects of control that you need for any application. Reliable, up-to-date, and versatile, Control System Fundamentals answers your basic control systems questions and acts as an ideal starting point for approaching any control problem.
In model predictive control (MPC) an optimization problem has to be solved at each time step, which in real-time applications makes it important to solve these efficiently and to have good upper bounds on worst-case solution time. Often for linear MPC problems, the optimization problem in question is a quadratic program (QP) that depends on parameters such as system states and reference signals. A popular class of methods for solving such QPs is active-set methods, where a sequence of linear systems of equations is solved. The primary contribution of this thesis is a method which determines which sequence of subproblems a popular class of such active-set algorithms need to solve, for every p...
This is the biggest, most comprehensive, and most prestigious compilation of articles on control systems imaginable. Every aspect of control is expertly covered, from the mathematical foundations to applications in robot and manipulator control. Never before has such a massive amount of authoritative, detailed, accurate, and well-organized information been available in a single volume. Absolutely everyone working in any aspect of systems and controls must have this book!
Wales (chemical and petroleum engineering, U. of Kansas) presents a minimum of essential theory, with numerical examples to illustrate the more involved procedures. Emphasis is placed on short cut methods, rules of thumb and data for design by analogy; a short chapter on costs of equipment is included. The introductory chapters will provide a general background to process design, flowsheeting, and process control. Annotation copyrighted by Book News, Inc., Portland, OR
Vols. for 1975- include publications cataloged by the Research Libraries of the New York Public Library with additional entries from the Library of Congress MARC tapes.
Paperback. These proceedings contain the papers from the IFAC Workshop on On-Line Fault Detection and Supervision in the Chemical Process Industries held in Newcastle-upon-Tyne, UK, 12-13 June 1995. The Workshop provided an ideal forum for academic and industrial researchers to discuss their experience and research results in this field. Topics covered included: Multivariate Methods, Neural Network Approaches, Supervision, Control & Diagnosis, Expert Systems, Learning & Dependable Systems, Performance & Fault Detection, Model Based Systems and Applications.