You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains a collection of original papers, associated with the International Conference on Partial Differential Equations, held in Potsdam, July 29 to August 2, 1996. The conference has taken place every year on a high scientific level since 1991; this event is connected with the activities of the Max Planck Research Group for Partial Differential Equations at Potsdam. Outstanding researchers and specialists from Armenia, Belarus, Belgium, Bulgaria, Canada, China, France, Germany, Great Britain, India, Israel, Italy, Japan, Poland, Romania, Russia, Spain, Sweden, Switzerland, Ukraine, and the USA contribute to this volume. The main topics concern recent progress in partial differential equations, microlocal analysis, pseudo-differential operators on manifolds with singularities, aspects in differential geometry and index theory, operator theory and operator algebras, stochastic spectral analysis, semigroups, Dirichlet forms, Schrodinger operators, semiclassical analysis, and scattering theory.
Includes entries for maps and atlases.
The present book consists of three parts. In the first part a theory of solvability for the stationary Stokes equations in exterior domains is developed. We prove existence of strong solutions in Sobolev spaces and use a localisation principle and the divergence equation to deduce further properties of the solution (uniqueness, asymptotics).
This volume contains the contributions of the conference "Partial Differential Equations" in Han-sur-Lesse, Belgium, December 1993. The originally intended Belgian-French meeting developed into a truely international conference, including specialists from Argentina, Germany, Puerto Rico, Russia, Spain, and the USA. The authors was to discuss a variety of important questions in applied sciences, engineering and mathematical physics which lead to deep structures and new challenges to the analysis of partial differential equations. The articles show the complexity of phenomena for a broader readership in non-linear analysis, free boundary value problems, effects from singularities, asymptotics, and stability of solutions.
The Maslov Classes have been playing an essential role in various parts of applied and pure mathematics, and physics, since the early 70's. Their correct definition is due to V. I. Arnold and J. Leray, in the transversal case, and to P. Dazord and the author in the general case. The aim of this book is to give a thorough treatment of the theory of the Maslov classes and of their relationship with the metaplectic group. It is (among other things) shown that these classes can be reconstructed, modulo 4, using only the analytic properties of the metaplectic group. In the last chapter the author sketches a scheme for geometric quantization by introducing two new concepts, that of metaplectic hal...
The Proceedings of the 1st European Nonlinear Oscillations Conference contain invited contributions of mathematicians engaged in the development of analytical and numerical methods and of scientists working on vibration problems in mechanics, physics, and other fields.