You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna’s logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Departm...
This volume brings together scholars across various domains of the history and philosophy of mathematics, investigating duality as a multi-faceted phenomenon. Encompassing both systematic analysis and historical examination, the book endeavors to elucidate the status, roles, and dynamics of duality within the realms of 19th and 20th-century mathematics. Eschewing a priori notions, the contributors embrace the diverse interpretations and manifestations of duality, thus presenting a nuanced and comprehensive perspective on this intricate subject. Spanning a broad spectrum of mathematical topics and historical periods, the book uses detailed case studies to investigate the different forms in wh...
View the abstract.
Nobel Prize–winning physicist Roger Penrose questions some of the most fashionable ideas in physics today, including string theory What can fashionable ideas, blind faith, or pure fantasy possibly have to do with the scientific quest to understand the universe? Surely, theoretical physicists are immune to mere trends, dogmatic beliefs, or flights of fancy? In fact, acclaimed physicist and bestselling author Roger Penrose argues that researchers working at the extreme frontiers of physics are just as susceptible to these forces as anyone else. In this provocative book, he argues that fashion, faith, and fantasy, while sometimes productive and even essential in physics, may be leading today'...
This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory.
In this graduate-level book, leading researchers explore various new notions of 'space' in mathematics.
Alexander Grothendieck is often considered one of the greatest mathematicians of the twentieth century (if not all time), and his unique vision continues to impact and inspire many fields and researchers today. Utilizing a multidisciplinary approach, this edited volume explores the profound influence his work and ideas have had not only on mathematics, but also on logic and philosophy. Chapters are written by international scholars, and many were inspired by talks given at the conference “Grothendieck, A Multifarious Giant” at Chapman University (May 24-28, 2022). Some chapters are written from a historical perspective and discuss the development of the main themes that characterized Grothendieck's work. Others are more mathematical in nature, analyzing and extending some of his more relevant and obscure results that are still not well understood. Philosophical implications and applications in logic are the subjects of other chapters. This volume will be of interest not only to mathematicians working in algebraic geometry, category theory, and other areas to which Grothendieck contributed, but also to philosophers, logicians, and historians of science.
In this graduate-level book, leading researchers explore various new notions of 'space' in mathematical physics.