You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.
This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.
This new edition of Analytic Number Theory for Beginners presents a friendly introduction to analytic number theory for both advanced undergraduate and beginning graduate students, and offers a comfortable transition between the two levels. The text starts with a review of elementary number theory and continues on to present less commonly covered topics such as multiplicative functions, the floor function, the use of big $O$, little $o$, and Vinogradov notation, as well as summation formulas. Standard advanced topics follow, such as the Dirichlet $L$-function, Dirichlet's Theorem for primes in arithmetic progressions, the Riemann Zeta function, the Prime Number Theorem, and, new in this seco...
Mathematics is kept alive by the appearance of new unsolved problems, problems posed from within mathematics itself, and also from the increasing number of disciplines where mathematics is applied. This book provides a steady supply of easily understood, if not easily solved, problems which can be considered in varying depths by mathematicians at all levels of mathematical maturity. For this new edition, the author has included new problems on symmetric and asymmetric primes, sums of higher powers, Diophantine m-tuples, and Conway's RATS and palindromes. The author has also included a useful new feature at the end of several of the sections: lists of references to OEIS, Neil Sloane's Online Encyclopedia of Integer Sequences. About the first Edition: "...many talented young mathematicians will write their first papers starting out from problems found in this book." András Sárközi, MathSciNet
Additive combinatorics is a relatively recent term coined to comprehend the developments of the more classical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary additive combinatorics is the interplay of a great variety of mathematical techniques, including combinatorics, harmonic analysis, convex geometry, graph theory, probability theory, algebraic geometry or ergodic theory. This book gathers the contributions of many of the leading researchers in the area and is divided into three parts. The two first parts correspond to the material of the main courses delivered, Additive combinatorics and non-unique factorizations, by Alfred Geroldinger, and Sumsets and structure, by Imre Z. Ruzsa. The third part collects the notes of most of the seminars which accompanied the main courses, and which cover a reasonably large part of the methods, techniques and problems of contemporary additive combinatorics.
Based on talks from the 2015 and 2016 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 19 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, primality testing, and cryptography are among the topics featured in this volume. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. Researchers and graduate students interested in the current progress in number theory will find this selection of articles relevant and compelling.
Particularly in the humanities and social sciences, festschrifts are a popular forum for discussion. The IJBF provides quick and easy general access to these important resources for scholars and students. The festschrifts are located in state and regional libraries and their bibliographic details are recorded. Since 1983, more than 639,000 articles from more than 29,500 festschrifts, published between 1977 and 2010, have been catalogued.
This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory and related parts of mathematics. The workshop attracts researchers and students who discuss the state-of-the-art, open problems and future challenges in number theory.
None