You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture. The NSF sponsored the four-day ''Vilnius Workshop on Algebraic Geometry and Geometric Modeling'', which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, ''On the determination of the degree of an equations obtained by elimination'', which foreshadows the modern application of mixed volumes in algebraic geometry. The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.
The subject of this book is the solution of polynomial equations, that is, s- tems of (generally) non-linear algebraic equations. This study is at the heart of several areas of mathematics and its applications. It has provided the - tivation for advances in di?erent branches of mathematics such as algebra, geometry, topology, and numerical analysis. In recent years, an explosive - velopment of algorithms and software has made it possible to solve many problems which had been intractable up to then and greatly expanded the areas of applications to include robotics, machine vision, signal processing, structural molecular biology, computer-aided design and geometric modelling, as well as certai...
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to...
None
None
None