You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Artificial Intelligence Data and Model Safety: Risks, Attacks and Defenses begins with a brief review of the history of AI and AI security and then introduces the fundamental aspects of machine learning and AI security. Two key aspects are covered: data safety and modeling. It provides detailed explanations of a wide range of attacks and defense algorithms related to data security, as well as adversarial attack/defense, backdoor attack/defense, and extraction attack/defense algorithms related to model security. By providing a systematic, comprehensive, and in-depth introduction to the topic, this book help readers understand the advanced attack and defense techniques in the field of AI security. - Systematic: comprehensively introduces AI safety, covering both attack and defense technologies - In-depth: covers a broad range of attack and defense strategies from the perspectives of adversarial learning and robust optimization, providing detailed explanations and insights - Includes the latest research developments and state-of-the-art techniques in the field of AI safety
This book constitutes the refereed proceedings of the 7th International Conference on Computational Data and Social Networks, CSoNet 2018, held in Shanghai, China, in December 2018. The 44 revised full papers presented in this book toghether with 2 extended abstracts, were carefully reviewed and selected from 106 submissions. The topics cover the fundamental background, theoretical technology development, and real-world applications associated with complex and data network analysis, minimizing in uence of rumors on social networks, blockchain Markov modelling, fraud detection, data mining, internet of things (IoT), internet of vehicles (IoV), and others.
This book constitutes the refereed proceedings of the 8th International Conference on Computational Data and Social Networks, CSoNet 2019, held in Ho Chi Minh City, Vietnam, in November 2019. The 22 full and 8 short papers presented in this book were carefully reviewed and selected from 120 submissions. The papers appear under the following topical headings: Combinatorial Optimization and Learning; Influence Modeling, Propagation, and Maximization; NLP and Affective Computing; Computational Methods for Social Good; and User Profiling and Behavior Modeling.
This two-volume set, LNAI 9077 + 9078, constitutes the refereed proceedings of the 19th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2015, held in Ho Chi Minh City, Vietnam, in May 2015. The proceedings contain 117 paper carefully reviewed and selected from 405 submissions. They have been organized in topical sections named: social networks and social media; classification; machine learning; applications; novel methods and algorithms; opinion mining and sentiment analysis; clustering; outlier and anomaly detection; mining uncertain and imprecise data; mining temporal and spatial data; feature extraction and selection; mining heterogeneous, high-dimensional and sequential data; entity resolution and topic-modeling; itemset and high-performance data mining; and recommendations.
This book constitutes the refereed proceedings of the 10th International Conference on Computational Data and Social Networks, CSoNet 2021, which was held online during November 15-17, 2021. The conference was initially planned to take place in Montreal, Quebec, Canada, but changed to an online event due to the COVID-19 pandemic. The 24 full and 8 short papers included in this book were carefully reviewed and selected from 57 submissions. They were organized in topical sections as follows: Combinatorial optimization and learning; deep learning and applications to complex and social systems; measurements of insight from data; complex networks analytics; special track on fact-checking, fake news and malware detection in online social networks; and special track on information spread in social and data networks.
This book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 5th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2016, held in conjunction with ECML-PKDD 2016 in Riva del Garda, Italy, in September 2016. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications.
This book constitutes the thoroughly refereed proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2017, held in Funchal, Madeira, Portugal, in November 2017. The 19 full papers presented were carefully reviewed and selected from 157 submissions. The papers are organized in topical sections on knowledge discovery and information retrieval; knowledge engineering and ontology development; and knowledge management and information sharing.
Commentary on economic laws in Vietnam.