You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed joint proceedings of the International Workshop on Computational Methods for Molecular Imaging, CMMI 2017, the International Workshop on Reconstruction and Analysis of Moving Body Organs, RAMBO 2017, and the International Stroke Workshop: Imaging and Treatment Challenges, SWITCH 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 5 full papers presented at FIFI 2017, the 9 full papers presented at RAMBO 2017, and the 4 full papers presented at SWITCH 2017 were carefully reviewed and selected. The CMMI papers cover various area...
This Open Access volume provides readers with an up-to-date and comprehensive guide to both methodological and applicative aspects of machine learning (ML) for brain disorders. The chapters in this book are organized into five parts. Part One presents the fundamentals of ML. Part Two looks at the main types of data used to characterize brain disorders, including clinical assessments, neuroimaging, electro- and magnetoencephalography, genetics and omics data, electronic health records, mobile devices, connected objects and sensors. Part Three covers the core methodologies of ML in brain disorders and the latest techniques used to study them. Part Four is dedicated to validation and datasets, ...
The three-volume set LNCS 9900, 9901, and 9902 constitutes the refereed proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, held in Athens, Greece, in October 2016. Based on rigorous peer reviews, the program committee carefully selected 228 revised regular papers from 756 submissions for presentation in three volumes. The papers have been organized in the following topical sections: Part I: brain analysis, brain analysis - connectivity; brain analysis - cortical morphology; Alzheimer disease; surgical guidance and tracking; computer aided interventions; ultrasound image analysis; cancer image analysis; Part II: machine learning and feature selection; deep learning in medical imaging; applications of machine learning; segmentation; cell image analysis; Part III: registration and deformation estimation; shape modeling; cardiac and vascular image analysis; image reconstruction; and MR image analysis.
The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022. The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology; Part II: Computational (integrative) pathology; computational anatomy and physiology; op...
The 12-volume set LNCS 15001 - 15012 constitutes the proceedings of the 27th International Conferenc on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, which took place in Marrakesh, Morocco, during October 6–10, 2024. MICCAI accepted 857 full papers from 2781 submissions. They focus on neuroimaging; image registration; computational pathology; computer aided diagnosis, treatment response, and outcome prediction; image guided intervention; visualization; surgical planning, and surgical data science; image reconstruction; image segmentation; machine learning; etc.
Biomedical Image Synthesis and Simulation: Methods and Applications presents the basic concepts and applications in image-based simulation and synthesis used in medical and biomedical imaging. The first part of the book introduces and describes the simulation and synthesis methods that were developed and successfully used within the last twenty years, from parametric to deep generative models. The second part gives examples of successful applications of these methods. Both parts together form a book that gives the reader insight into the technical background of image synthesis and how it is used, in the particular disciplines of medical and biomedical imaging. The book ends with several perspectives on the best practices to adopt when validating image synthesis approaches, the crucial role that uncertainty quantification plays in medical image synthesis, and research directions that should be worth exploring in the future. - Gives state-of-the-art methods in (bio)medical image synthesis - Explains the principles (background) of image synthesis methods - Presents the main applications of biomedical image synthesis methods
This book constitutes the refereed proceedings of the Third International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 14 full papers presented were carefully reviewed and selected from numerous submissions. This workshop continues to provide a state-of-the-art and integrative perspective on simulation and synthesis in medical imaging for the purpose of invigorating research and stimulating new ideas on how to build theoretical links, practical synergies, and best practices between these two research directions.
This book constitutes the refereed proceedings of the 6th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 14 full papers presented were carefully reviewed and selected from 18 submissions. The contributions span the following broad categories in alignment with the initial call-for-papers: methods based on generative models or adversarial learning for MRI/CT/ microscopy image synthesis, and several applications of image synthesis and simulation for data augmentation, image enhancement, or segmentation. *The workshop was held virtually.
This book constitutes the refereed proceedings of the 4th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 16 full papers presented were carefully reviewed and selected from 21 submissions. The contributions span the following broad categories in alignment with the initial call-for-papers: methods based on generative models or adversarial learning for MRI/CT/PET/microscopy image synthesis, image super resolution, and several applications of image synthesis and simulation for data augmentation, segmentation or lesion detection.