You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is devoted to the engineering of protein-based nanostructures and nanomaterials. One key challenge in nanobiotechnology is to be able to exploit the natural repertoire of protein structures and functions to build materials with defined properties at the nanoscale using “bottom-up” strategies. This book addresses in an integrated manner all the critical aspects that need to be understood and considered to design the next generation of nano-bio assemblies. The book covers first the fundamentals of the design and features of the protein building blocks and their self-assembly illustrating some of the most relevant examples of nanostructural design. Finally, the book contains a section dedicated to demonstrated applications of these novel bioinspired nanostructures in different fields from hybrid nanomaterials to regenerative medicine. This book provides a comprehensive updated review of this rapidly evolving field.
Every speck of dust, drop of water, and grain of soil and each part of every plant and animal contain their own worlds of microbes. Designed as a key text for upper-level undergraduates majoring in microbiology, genetics, or biology, Principles of Microbial Diversity provides a solid curriculum for students to explore the enormous range of biological diversity in the microbial world. Within these richly illustrated pages, author and professor James W. Brown provides a practical guide to microbial diversity from a phylogenetic perspective in which students learn to construct and interpret evolutionary trees from DNA sequences. He then offers a survey of the "tree of life" that establishes the necessary basic knowledge about the microbial world. Finally, the author draws the student's attention to the universe of microbial diversity with focused studies of the contributions that specific organisms make to the ecosystem. Principles of Microbial Diversity fills an empty niche in microbiology textbooks by providing an engaging, cutting-edge view of the "microbial zoo" that exists around us, covering bacteria, archaea, eukaryotes, and viruses.
This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual cha...
A comprehensive reference on the state of the science for both experienced researchers and for those who are interested in discovering its many promising applications. • Examines c-di-GMP signaling from a variety of angles, beginning with an introductory chapter that compares c-di-GMP to the better-known second messenger cAMP. • Recounts the discovery of c-di-GMP, explains the important role of bioinformatics in the development and continued evolution of the field, and describes the fundamental structure, function, regulation, and integration of c-di-GMP pathways. • Explores the role of c-di-GMP in such diverse processes as flagellar biogenesis and motility, extracellular polysaccharide biosynthesis, biofilm development, virulence, and innate host immunity.
None
Providing the single most comprehensive and authoritative textbook on bacterial molecular genetics, this updated edition provides descriptive background information, detailed experimental methods, examples of genetic analyses, and advanced material relevant to current applications of molecular genetics.
None
None