You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Dissociative Recombination of Molecular Ions with Electrons is a comprehensive collection of refereed papers describing the latest developments in dissociative recombination research. The papers are written by the leading researchers in the field. The topics covered include the use of microwave afterglows, merged beams and storage rings to measure rate coefficients and to identify the products and their yields. The molecules studied range in size from the smallest, H2+, to bovine insulin ions. The theoretical papers cover the important role of Rydberg states and the use of wave packets and quantum defect theory to deduce cross sections, rate constants and quantum yields. Several theoretical ...
This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.
Focusing on atom-light interactions and containing numerous exercises, this in-depth textbook prepares students for research in a fast-growing field.
Arising from a workshop, this book surveys the physics of ultracold atoms and molecules taking into consideration the latest research on ultracold phenomena, such as Bose Einstein condensation and quantum computing. Several reputed authors provide an introduction to the field, covering recent experimental results on atom and molecule cooling as well as the theoretical treatment.
"There have been enormous recent advances in our ability to produce and trap samples of translationally cold molecules (below 1 K) and ultracold molecules (below 1 mK). Molecules such as NH3, OH and NH have been cooled from room temperature to the milliKelvin regime by a variety of methods including buffer-gas cooling and Stark deceleration. Molecules have also been produced in ultracold atomic gases by photoassociation and magnetoassociation of pairs of atoms. Bose-Einstein condensates have been produced for dimers of both bosonic and fermionic alkali metal atoms, and the first signatures of ultracold triatomic and tetraatomic molecules have been observed. The new capabilities open up many ...
This conference is an international forum to discuss fundamental and applied research associated with the formation of spectral line profiles. It includes research involving line profiles observed in absorption, emission, and scattering by laboratory and astrophysical sources. The conference brings together specialists from many diverse fields to discuss common aspects of line shape theory and experiments. Areas covered in the conference included: laser-produced plasmas, magnetically confined plasmas, stellar atmospheres, molecular and atomic systems, high-resolution spectroscopic applications and measurements, collision-induced effects, and ultracold regimes. Papers on experiments, theory, and applications are included in this volume.
Recent years have seen tremendous progress in research on cold and controlled molecular collisions, both in theory and in experiment. The advent of techniques to prepare cold and ultracold molecules and ions, to store them in optical lattices or in charged quasicristalline structures, and to use them in crossed or merged beam experiments have opened many new possibilities to study the most fundamental aspects of molecular interactions. At the same time, theoretical work has made progress in tackling these problems and accurately describing quantum effects in complex systems, and in proposing viable options to control chemical reactions at ultralow energies. Through tutorials on both the theoretical and experimental aspects of research in cold and ultracold molecular collisions, this book provides advanced undergraduate students, graduate students and researchers with the foundations needed to understand this exciting field.
The focus of the Second International Spectroscopy Conferences was spectroscopy and its applications in Physics, Chemistry and Biology. Researchers gathered in these fields from 15 countries, mainly North Africa and Europe. The Conference provided an opportunity to present and discuss the newest results in fundamental and applied spectroscopy from both theoretical and experimental sides. The cross-disciplinary aspects were emphasized and all papers have been peer-reviewed.
None