You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of three conferences in Ergodic Theory and Symbolic Dynamics: the Oxtoby Centennial Conference, held from October 30–31, 2010, at Bryn Mawr College; the Williams Ergodic Theory Conference, held from July 27–29, 2012, at Williams College; and the AMS Special Session on Ergodic Theory and Symbolic Dynamics, held from January 17–18, 2014, in Baltimore, MD. This volume contains articles covering a variety of topics in measurable, symbolic and complex dynamics. It also includes a survey article on the life and work of John Oxtoby, providing a source of information about the many ways Oxtoby's work influenced mathematical thought in this and other fields.
This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.
In this course, Boston University Professor Robert L. Devaney presents an introduction to differential equations.
"Differential Equations, Dynamical Systems, and an Introduction to Chaos, now in its third edition, covers the dynamical aspects of ordinary differential equations. It explores the relations between dynamical systems and certain fields outside pure mathematics, and continues to be the standard textbook for advanced undergraduate and graduate courses in this area.""Written for students with a background in calculus and elementary linear algebra, the text is rigorous yet accessible and contains examples and explorations to reinforce learning." - BACK COVER.
This volume puts together several important lectures on the Hamiltonian Systems and Celestial Mechanics to form a comprehensive and authoritative collection of works on the subject. Their relationship to several aspects of topology, mechanics and dynamical systems in general are also emphasized. The papers presented are an outgrowth of the lectures that took place during the “International Symposium on Hamiltonian Systems and Celestial Mechanics ”, which was held at Cocoyoc (Morelos, México) from September 13 to 17, 1994.
In honour of Noel Baker, a leading exponent of transcendental complex dynamics, this book describes the state of the art in this subject.
Research topics in the book include complex dynamics, minimal surfaces, fluid flows, harmonic, conformal, and polygonal mappings, and discrete complex analysis via circle packing. The nature of this book is different from many mathematics texts: the focus is on student-driven and technology-enhanced investigation. Interlaced in the reading for each chapter are examples, exercises, explorations, and projects, nearly all linked explicitly with computer applets for visualization and hands-on manipulation.
Read the masters! Experience has shown that this is good advice for the serious mathematics student. This book contains a selection of the classical mathematical papers related to fractal geometry. For the convenience of the student or scholar wishing to learn about fractal geometry, nineteen of these papers are collected here in one place. Twelve of the nineteen have been translated into English from German, French, or Russian. In many branches of science, the work of previous generations is of interest only for historical reasons. This is much less so in mathematics.1 Modern-day mathematicians can learn (and even find good ideas) by reading the best of the papers of bygone years. In preparing this volume, I was surprised by many of the ideas that come up.
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
This book presents elements of the theory of chaos in dynamical systems in a framework of theoretical understanding coupled with numerical and graphical experimentation. It describes the theory of fractals, focusing on the importance of scaling and ordinary differential equations.