You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Modern data analysis stands at the interface of statistics, computer science, and discrete mathematics. This volume describes new methods in this area, with special emphasis on classification and cluster analysis. Those methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.
18th Symposium Held in Porto, Portugal, 2008
Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets. Standard statistical methods do not have the power or flexibility to make sense of very large datasets, and symbolic data analysis techniques have been developed in order to extract knowledge from such data. Symbolic data methods differ from that of data mining, for example, because rather than identifying points of interest in the data, symbolic data methods allow the user to build models of the data and make predictions about future events. This book is the result of the work f a pan-European project team led by Edwin Diday following 3 years work sponsored by EUROSTAT. It includes a full explanation of the new SODAS software developed as a result of this project. The software and methods described highlight the crossover between statistics and computer science, with a particular emphasis on data mining.
This volume contains revised versions of selected papers presented during the biannual meeting of the Classification and Data Analysis Group of SocietA Italiana di Statistica, which was held in Bologna, September 22-24, 2003. The scientific program of the conference included 80 contributed papers. Moreover it was possible to recruit six internationally renowned invited spe- ers for plenary talks on their current research works regarding the core topics of IFCS (the International Federation of Classification Societies) and Wo- gang Gaul and the colleagues of the GfKl organized a session. Thus, the conference provided a large number of scientists and experts from home and abroad with an attrac...
Visualization and Verbalization of Data shows how correspondence analysis and related techniques enable the display of data in graphical form, which results in the verbalization of the structures in data. Renowned researchers in the field trace the history of these techniques and cover their current applications. The first part of the book explains the historical origins of correspondence analysis and associated methods. The second part concentrates on the contributions made by the school of Jean-Paul Benzécri and related movements, such as social space and geometric data analysis. Although these topics are viewed from a French perspective, the book makes them understandable to an international audience. Throughout the text, well-known experts illustrate the use of the methods in practice. Examples include the spatial visualization of multivariate data, cluster analysis in computer science, the transformation of a textual data set into numerical data, the use of quantitative and qualitative variables in multiple factor analysis, different possibilities of recoding data prior to visualization, and the application of duality diagram theory to the analysis of a contingency table.
This volume presents recent methodological developments in data analysis and classification. It covers a wide range of topics, including methods for classification and clustering, dissimilarity analysis, consensus methods, conceptual analysis of data, and data mining and knowledge discovery in databases. The book also presents a wide variety of applications, in fields such as biology, micro-array analysis, cyber traffic, and bank fraud detection.
COMPSTAT symposia have been held regularly since 1974 when they started in Vienna. This tradition has made COMPSTAT a major forum for the interplay of statistics and computer sciences with contributions from many well known scientists all over the world. The scientific programme of COMPSTAT '96 covers all aspects of this interplay, from user-experiences and evaluation of software through the development and implementation of new statistical ideas. All papers presented belong to one of the three following categories: - Statistical methods (preferable new ones) that require a substantial use of computing; - Computer environments, tools and software useful in statistics; - Applications of computational statistics in areas of substantial interest (environment, health, industry, biometrics, etc.).
The volume presents new developments in data analysis and classification, and gives a state of the art impression of these scientific fields at the turn of the Millennium. Areas that receive considerable attention in this book are Cluster Analysis, Data Mining, Multidimensional and Symbolic Data Analysis, Decision and Regression Trees. The volume contains a refereed selection of original research papers, overview papers, and innovative applications presented at the 7th Conference of the International Federation of Classification Societies (IFCS-2000), with contributions from eminent scientists all over the world. The reader finds introductory material into various areas and kaleidoscopic views of recent technical and methodological developments in widely different areas within data analysis and classification. The presence of a large number of application papers demonstrates the usefulness of the recently developed techniques. TOC:Cluster Analysis.- Discrimination, Regression Trees, and Data Mining.- Multivariate and Multidimensional Data Analysis.- Data Science.- Symbolic Data Analysis.
COMPSTAT symposia have been held regularly since 1974 when they started in Vienna. This tradition has made COMPSTAT a major forum for the interplay of statistics and computer sciences with contributions from many well known scientists all over the world. The scientific programme of COMPSTAT '96 covers all aspects of this interplay, from user-experiences and evaluation of software through the development and implementation of new statistical ideas. All papers presented belong to one of the three following categories: - Statistical methods (preferable new ones) that require a substantial use of computing; - Computer environments, tools and software useful in statistics; - Applications of computational statistics in areas of substantial interest (environment, health, industry, biometrics, etc.).
None