You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Foundations of the Formal Sciences" (FotFS) is a series of interdisciplinary conferences in mathematics, philosophy, computer science and linguistics. The main goal is to reestablish the traditionally strong links between these areas of research that have been lost in the past decades. The second conference in the series had the subtitle "Applications of Mathematical Logic in Philosophy and Linguistics" and brought speakers from all parts of the Formal Sciences together to give a holistic view of how mathematical methods can improve our philosophical and technical understanding of language and scientific discourse, ranging from the theoretical level up to applications in language recognition software. Audience: This volume is of interest to all formal philosophers and theoretical linguists. In addition to that, logicians interested in the applications of their field and logic students in mathematics, computer science, philosophy and linguistics can use the volume to broaden their knowledge of applications of logic.
This volume is a collection of written versions of the talks given at the Workshop on Computational Prospects of Infinity, held at the Institute for Mathematical Sciences from 18 June to 15 August 2005. It consists of contributions from many of the leading experts in recursion theory (computability theory) and set theory. Topics covered include the structure theory of various notions of degrees of unsolvability, algorithmic randomness, reverse mathematics, forcing, large cardinals and inner model theory, and many others.
This volume is a collection of written versions of the talks given at the Workshop on Computational Prospects of Infinity, held at the Institute for Mathematical Sciences from 18 June to 15 August 2005. It consists of contributions from many of the leading experts in recursion theory (computability theory) and set theory. Topics covered include the structure theory of various notions of degrees of unsolvability, algorithmic randomness, reverse mathematics, forcing, large cardinals and inner model theory, and many others.
This collection of articles presents a snapshot of the status of computability theory at the end of the millennium and a list of fruitful directions for future research. The papers represent the works of experts in the field who were invited speakers at the AMS-IMS-SIAM 1999 Summer Conference on Computability Theory and Applications, which focused on open problems in computability theory and on some related areas in which the ideas, methods, and/or results of computability theory play a role. Some presentations are narrowly focused; others cover a wider area. Topics included from "pure" computability theory are the computably enumerable degrees (M. Lerman), the computably enumerable sets (P....
This book on proof theory centers around the legacy of Kurt Schütte and its current impact on the subject. Schütte was the last doctoral student of David Hilbert who was the first to see that proofs can be viewed as structured mathematical objects amenable to investigation by mathematical methods (metamathematics). Schütte inaugurated the important paradigm shift from finite proofs to infinite proofs and developed the mathematical tools for their analysis. Infinitary proof theory flourished in his hands in the 1960s, culminating in the famous bound Γ0 for the limit of predicative mathematics (a fame shared with Feferman). Later his interests shifted to developing infinite proof calculi f...
From shell shortcuts and mail tricks to password aging strategies and crisis control, here's a reference bible for everything UNIX users always wanted to do with UNIX but were too busy to figure out for themselves. UNIX novices and veterans alike will savor Open Computing's tips dealing exclusively with UNIX.