You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An introductory textbook on attosecond and strong field physics, covering fundamental theory and modeling techniques, as well as future opportunities and challenges.
Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.
This volume of Advances in Atomic, Molecular, and Optical Physics continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume. - International experts - Comprehensive articles - New developments
The International Workshop on Coherent Control of Carrier Dynamics in Semiconductors was held May 19 to 22, 1998 at the University of Illinois at Chicago. Its intent was to bring together an international and interdisciplinary group of scientists to discuss recent progress, pertinent problems, and open questions in the field of coherent control in atoms, molecules, and semiconductors, in particular. Twenty-seven scientists from the physical chemistry, quantum optics, semiconductor, electrical engineering, and laser communities accepted our invitation and made this event a meeting of exciting presentations and vivid discussions. This volume contains the proceedings of this workshop. Most spea...
Consisting of ten chapters written by some of the world's leaders in the field, this book combines experimental, theoretical and numerical studies of current-driven phenomena in the nanoscale. The topics covered range from single-molecule, site-specific nanochemistry induced by a scanning tunneling microscope, through inelastic tunneling spectrosco
Molecular reaction dynamics is the study of chemical and physical transformations of matter at the molecular level. The understanding of how chemical reactions occur and how to control them is fundamental to chemists and interdisciplinary areas such as materials and nanoscience, rational drug design, environmental and astrochemistry. This book provides a thorough foundation to this area. The first half is introductory, detailing experimental techniques for initiating and probing reaction dynamics and the essential insights that have been gained. The second part explores key areas including photoselective chemistry, stereochemistry, chemical reactions in real time and chemical reaction dynamics in solutions and interfaces. Typical of the new challenges are molecular machines, enzyme action and molecular control. With problem sets included, this book is suitable for advanced undergraduate and graduate students, as well as being supplementary to chemical kinetics, physical chemistry, biophysics and materials science courses, and as a primer for practising scientists.
This book describes the use of modern computational methods in predicting high resolution molecular spectra, which allows the experimental spectroscopist to interpret and assign real spectra. * Offers a comprehensive treatment of modern computation techniques. * Provides a collection of material from different areas of theoretical chemistry and physics. * Bridges the gap between traditional quantum chemistry and experimental molecular spectroscopy.
The 19 papers in this year's collection report on recent research involving the use of physics to explore chemical structures and reactions, particularly those of proteins and polymers. The authors address such diverse areas as gas-phase spectroscopic studies, surface interfacial phenomena, liquid-phase ultrafast laser coherent dynamics, reversible polymerization, and protein folding. The topics include the molecular theory of hydrophobic effects, quantum mechanical methods for enzyme kinetics, the electronic properties of single-walled carbon nanotubes, time-resolved photoelectron angular distributions, and the molecular Hamiltonian. Annotation copyrighted by Book News, Inc., Portland, OR.