You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We solve a number of questions pertaining to the dynamics of linear operators on Hilbert spaces, sometimes by using Baire category arguments and sometimes by constructing explicit examples. In particular, we prove the following results. (i) A typical hypercyclic operator is not topologically mixing, has no eigen-values and admits no non-trivial invariant measure, but is densely distri-butionally chaotic. (ii) A typical upper-triangular operator with coefficients of modulus 1 on the diagonal is ergodic in the Gaussian sense, whereas a typical operator of the form “diagonal with coefficients of modulus 1 on the diagonal plus backward unilateral weighted shift” is ergodic but has only count...
This book is dedicated to Victor Emmanuilovich Katsnelson on the occasion of his 75th birthday and celebrates his broad mathematical interests and contributions.Victor Emmanuilovich’s mathematical career has been based mainly at the Kharkov University and the Weizmann Institute. However, it also included a one-year guest professorship at Leipzig University in 1991, which led to him establishing close research contacts with the Schur analysis group in Leipzig, a collaboration that still continues today. Reflecting these three periods in Victor Emmanuilovich's career, present and former colleagues have contributed to this book with research inspired by him and presentations on their joint work. Contributions include papers in function theory (Favorov-Golinskii, Friedland-Goldman-Yomdin, Kheifets-Yuditskii) , Schur analysis, moment problems and related topics (Boiko-Dubovoy, Dyukarev, Fritzsche-Kirstein-Mädler), extension of linear operators and linear relations (Dijksma-Langer, Hassi-de Snoo, Hassi -Wietsma) and non-commutative analysis (Ball-Bolotnikov, Cho-Jorgensen).
Gunter Lumer was an outstanding mathematician whose works have great influence on the research community in mathematical analysis and evolution equations. He was at the origin of the breath-taking development the theory of semigroups saw after the pioneering book of Hille and Phillips from 1957. This volume contains invited contributions presenting the state of the art of these topics and reflecting the broad interests of Gunter Lumer.
ThetheoryofstronglycontinuoussemigroupsoflinearoperatorsonBanach spaces, operator semigroups for short, has become an indispensable tool in a great number of areas of modern mathematical analysis. In our Springer Graduate Text [EN00] we presented this beautiful theory, together with many applications, and tried to show the progress made since the pub- cation in 1957 of the now classical monograph [HP57] by E. Hille and R. Phillips. However, the wealth of results exhibited in our Graduate Text seems to have discouraged some of the potentially interested readers. With the present text we o?er a streamlined version that strictly sticks to the essentials. We have skipped certain parts, avoided t...
This book grew out of the 2021 Chapel Hill Ergodic Theory Workshop (https://ergwork.web.unc.edu/schedule-of-talks-201/) during which young and senior researchers presented recent advances in ergodic theory and dynamical systems. Included are original research and survey articles devoted to various topics in Ergodic Theory and Dynamical Systems. Some are from presenters at this workshop. This book attracts young and senior researchers alike.
This volume includes contributions originating from a conference held at Chapman University during November 14-19, 2017. It presents original research by experts in signal processing, linear systems, operator theory, complex and hypercomplex analysis and related topics.
This volume contains a collection of survey and research articles from the special program and international conference on Dynamics and Numbers held at the Max-Planck Institute for Mathematics in Bonn, Germany in 2014. The papers reflect the great diversity and depth of the interaction between number theory and dynamical systems and geometry in particular. Topics covered in this volume include symbolic dynamics, Bratelli diagrams, geometry of laminations, entropy, Nielsen theory, recurrence, topology of the moduli space of interval maps, and specification properties.
Erst spät hat man in Deutschland erkannt, dass ein konstruktiver Umgang mit Migration und Integration entscheidend ist für die Entwicklungsfähigkeit der Gesellschaft. Besonders deutlich wird dies im Bereich von Bildung, Ausbildung und Arbeitsmarkt. Dieser Band mit seinem Fokus auf der individuellen Bildungslaufbahnberatung leistet hierzu einen wichtigen Beitrag. Seine Beiträge veranschaulichen aus Sicht von Wissenschaft und Praxis, aber auch aus der Erfahrung junger Menschen mit Migrationshintergrund die Notwendigkeiten und Möglichkeiten einer Beratung, die für die Belange von ZuwanderInnen sensibel ist. Konzepte, die an kritischen Stationen der individuellen Bildungsbiografien im Migrationskontext ansetzen, etwa am Übergang von der Schule in die Ausbildung, münden in einem eindringlichen Plädoyer für eine bessere Bildungslaufbahnberatung. Gefordert wird, das (Aus-)Bildungssystem von Personen mit Migrationshintergrund strukturell zu reformieren, ebenso den Umgangs mit deren Qualifikationen und Erfahrungen aus den Herkunftsländern, die sie in unsere gemeinsame Gesellschaft einbringen.
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis...
The purpose of this book is to provide an invitation to the beautiful and important subject of ergodic theorems, both classical and modern, which lies at the intersection of many fundamental mathematical disciplines: dynamical systems, probability theory, topology, algebra, number theory, analysis and functional analysis. The book is suitable for undergraduate and graduate students as well as non-specialists with basic knowledge of functional analysis, topology and measure theory. Starting from classical ergodic theorems due to von Neumann and Birkhoff, the state-of-the-art of modern ergodic theorems such as subsequential, multiple and weighted ergodic theorems are presented. In particular, two deep connections between ergodic theorems and number theory are discussed: Furstenberg’s famous proof of Szemerédi’s theorem on existence of arithmetic progressions in large sets of integers, and the Sarnak conjecture on the random behavior of the Möbius function. An extensive list of references to other literature for readers wishing to deepen their knowledge is provided.