You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a unique and unusual introduction to graph theory by one of the founding fathers, and will be of interest to all researchers in the subject. It is not intended as a comprehensive treatise, but rather as an account of those parts of the theory that have been of special interest to the author. Professor Tutte details his experience in the area, and provides a fascinating insight into how he was led to his theorems and the proofs he used. As well as being of historical interest it provides a useful starting point for research, with references to further suggested books as well as the original papers. The book starts by detailing the first problems worked on by Professor Tutte and his colleagues during his days as an undergraduate member of the Trinity Mathematical Society in Cambridge. It covers subjects such as comnbinatorial problems in chess, the algebraicization of graph theory, reconstruction of graphs, and the chromatic eigenvalues. In each case fascinating historical and biographical information about the author's research is provided.
None
An effort has been made to present the various topics in the theory of graphs in a logical order, to indicate the historical background, and to clarify the exposition by including figures to illustrate concepts and results. In addition, there are three appendices which provide diagrams of graphs, directed graphs, and trees. The emphasis throughout is on theorems rather than algorithms or applications, which however are occaisionally mentioned.
This book constitutes the refereed proceedings of the 17th International Symposium Fundamentals of Computation Theory, FCT 2009, held in Wroclaw, Poland in August 2009. The 29 revised full papers were carefully reviewed and selected from 67 submissions. The papers address all current topics in computation theory such as automata and formal languages, design and analysis of algorithms, computational and structural complexity, semantics, logic, algebra and categories in computer science, circuits and networks, learning theory, specification and verification, parallel and distributed systems, concurrency theory, cryptography and cryptograhic protocols, approximation and randomized algorithms, computational geometry, quantum computation and information, bio-inspired computation.
Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new bran ches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-tri vially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one a...
None