You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Burn for Burn
This volume contains the proceedings of the International Conference on Algebra, Discrete Mathematics and Applications, held from December 9–11, 2017, at Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Maharashtra), India. Contemporary topics of research in algebra and its applications to algebraic geometry, Lie groups, algebraic combinatorics, and representation theory are covered. The articles are devoted to Leavitt path algebras, roots of elements in Lie groups, Hilbert's Nullstellensatz, mixed multiplicities of ideals, singular matrices, rings of integers, injective hulls of modules, representations of linear, symmetric groups and Lie algebras, the algebra of generic matrices and almost injective modules.
Explores applications of Jordan theory to the theory of Lie algebras. After presenting the general theory of nonassociative algebras and of Lie algebras, the book then explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself.
Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field — that of mathematics — and an age limit of 40 has become an accepted tradition. Mathematics has in the main been interpreted as pure mathematics, and this is not so unreasonable since major contributions in some applied areas can be (and have been) recognized with Nobel Prizes.A list of Fields Medallists and their contributions provides a bird's-eye view of mathematics over the past 60 years. It highlights the areas in which, at various times, greatest progress has been made. This volume does not pretend to be comprehensive, nor is it a historical document. On the other hand, it presents contributions from Fields Medallists and so provides a highly interesting and varied picture.The second edition of Fields Medallists' Lectures features additional contributions from the following Medallists: Kunihiko Kodaira (1954), Richard E Borcherds (1998), William T Gowers (1998), Maxim Kontsevich (1998), Curtis T McMullen (1998) and Vladimir Voevodsky (2002).
Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics - and an age limit of 40 has become an accepted tradition. Mathematics has in the main been interpreted as pure mathematics, and this is not so unreasonable since major contributions in some applied areas can be (and have been) recognized with Nobel Prizes. The restriction to 40 years is of marginal significance, since most mathematicians have made their mark long before this age.A list of Fields Medallists and their contributions provides a bird's eye view of mathematics over the past 60 years. It highlights ...
Since the first ICM was held in Zürich in 1897, it has become the pinnacle of mathematical gatherings. It aims at giving an overview of the current state of different branches of mathematics and its applications as well as an insight into the treatment of special problems of exceptional importance. The proceedings of the ICMs have provided a rich chronology of mathematical development in all its branches and a unique documentation of contemporary research. They form an indispensable part of every mathematical library. The Proceedings of the International Congress of Mathematicians 1994, held in Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I contains an account...
Profiles Russian mathematician Efim I. Zelmanov (1955- ), with information provided by the University of Saint Andrews School of Mathematics and Statistics in Scotland as part of the MacTutor History of Mathematics Archive. Notes that he solved a question on the theory of Lie algebras.
Anatolii Illarionovich Shirshov (1921–1981) was an outstanding Russian mat- maticianwhoseworksessentiallyin?uenced thetheoriesofassociative,Lie,Jordan and alternative rings. Many Shirshov’s students and students of his students had a successful research career in mathematics. AnatoliiShirshovwasbornonthe8thofAugustof1921inthevillageKolyvan near Novosibirsk. Before the II World War he started to study mathematics at Tomsk university but then went to the front to ?ght as a volunteer. In 1946 he continued his study at Voroshilovgrad (now Lugansk) Pedagogical Institute and at the same time taught mathematics at a secondary school. In 1950 Shirshov was accepted as a graduate student at the Mo...
Publishes research articles that focus on groups or group actions as well as articles in other areas of mathematics in which groups or group actions are used as a main tool. Covers all topics of modern group theory with preference given to geometric, asymptotic and combinatorial group theory, dynamics of group actions, probabilistic and analytical methods, interaction with ergodic theory and operator algebras, and other related fields.
Anatolii Illarionovich Shirshov (1921–1981) was an outstanding Russian mat- maticianwhoseworksessentiallyin?uenced thetheoriesofassociative,Lie,Jordan and alternative rings. Many Shirshov’s students and students of his students had a successful research career in mathematics. AnatoliiShirshovwasbornonthe8thofAugustof1921inthevillageKolyvan near Novosibirsk. Before the II World War he started to study mathematics at Tomsk university but then went to the front to ?ght as a volunteer. In 1946 he continued his study at Voroshilovgrad (now Lugansk) Pedagogical Institute and at the same time taught mathematics at a secondary school. In 1950 Shirshov was accepted as a graduate student at the Mo...