You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Contrary to popular belief--and despite the expulsion, emigration, or death of many German mathematicians--substantial mathematics was produced in Germany during 1933-1945. In this landmark social history of the mathematics community in Nazi Germany, Sanford Segal examines how the Nazi years affected the personal and academic lives of those German mathematicians who continued to work in Germany. The effects of the Nazi regime on the lives of mathematicians ranged from limitations on foreign contact to power struggles that rattled entire institutions, from changed work patterns to military draft, deportation, and death. Based on extensive archival research, Mathematicians under the Nazis show...
This book contains the full text of the letters from Emil Artin to Helmut Hasse, as they are preserved in the Handschriftenabteilung of the Göttingen University Library. There are 49 such letters, written in the years 1923-1934, discussing mathematical problems of the time. The corresponding letters in the other direction, i.e., from Hasse to Artin, seem to be lost. We have supplemented Artin's letters by detailed comments, combined with a description of the mathematical environment of Hasse and Artin, and of the relevant literature. In this way it has become possible to sufficiently reconstruct the content of the corresponding letters from Hasse to Artin too. Artin and Hasse were among tho...
Algebra, as a subdiscipline of mathematics, arguably has a history going back some 4000 years to ancient Mesopotamia. The history, however, of what is recognized today as high school algebra is much shorter, extending back to the sixteenth century, while the history of what practicing mathematicians call "modern algebra" is even shorter still. The present volume provides a glimpse into the complicated and often convoluted history of this latter conception of algebra by juxtaposing twelve episodes in the evolution of modern algebra from the early nineteenth-century work of Charles Babbage on functional equations to Alexandre Grothendieck's mid-twentieth-century metaphor of a ``rising sea'' in...
None
Although she was famous as the "mother of modern algebra," Emmy Noether’s life and work have never been the subject of an authoritative scientific biography. Emmy Noether – Mathematician Extraordinaire represents the most comprehensive study of this singularly important mathematician to date. Focusing on key turning points, it aims to provide an overall interpretation of Noether’s intellectual development while offering a new assessment of her role in transforming the mathematics of the twentieth century. Hermann Weyl, her colleague before both fled to the United States in 1933, fully recognized that Noether’s dynamic school was the very heart and soul of the famous Göttingen commun...
As modern mathematics has been developed by mathematicians over the past several hundred years, it is interesting to trace the academic genealogy of mathematicians — especially since all mathematicians learnt mathematics from their teachers. In this book, 750 mathematicians are listed along with the detailed descriptions of 464 famous mathematicians of the 19th and 20th centuries. In addition, interesting life stories and mathematical achievements are included with photographs.
Based upon the principle that graph design should be a science, this book presents the principles of graph construction. The orientation of the material is toward graphs in technical writings, such as journal articles and technical reports. But much of the material is relevant for graphs shown in talks and for graphs in nontechnical publications. -- from back cover.
None
This volume consists of the English translations of the letters exchanged between Emil Artin to Helmut Hasse written from 1921 until 1958. The letters are accompanied by extensive comments explaining the mathematical background and giving the information needed for understanding these letters. Most letters deal with class field theory and shed a light on the birth of one of its most profound results: Artin's reciprocity law.