Welcome to our book review site www.go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 904

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2012-09-08
  • -
  • Publisher: Springer

This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionalit...

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 883

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2019-01-22
  • -
  • Publisher: Springer

The three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learningensemble methods; and evaluation. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 724

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2019-01-17
  • -
  • Publisher: Springer

The three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learning; ensemble methods; and evaluation. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. Part III: ADS data science applications; ADS e-commerce;ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 538

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2010-08-17
  • -
  • Publisher: Springer

The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2010, was held in Barcelona, September 20–24, 2010, consolidating the long junction between the European Conference on Machine Learning (of which the ?rst instance as European wo- shop dates back to 1986) and Principles and Practice of Knowledge Discovery in Data Bases (of which the ?rst instance dates back to 1997). Since the two conferences were ?rst collocated in 2001, both machine learning and data m- ing communities have realized how each discipline bene?ts from the advances, and participates to de?ning the challenges, of the sister discipline. Accordingly, a single E...

Feature Engineering for Machine Learning and Data Analytics
  • Language: en
  • Pages: 419

Feature Engineering for Machine Learning and Data Analytics

  • Type: Book
  • -
  • Published: 2018-03-14
  • -
  • Publisher: CRC Press

Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for majo...

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 802

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2015-08-28
  • -
  • Publisher: Springer

The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.

Machine Learning and Knowledge Discovery in Databases, Part III
  • Language: en
  • Pages: 683

Machine Learning and Knowledge Discovery in Databases, Part III

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Proceedings of the Sixth SIAM International Conference on Data Mining
  • Language: en
  • Pages: 662

Proceedings of the Sixth SIAM International Conference on Data Mining

  • Type: Book
  • -
  • Published: 2006-04-01
  • -
  • Publisher: SIAM

The Sixth SIAM International Conference on Data Mining continues the tradition of presenting approaches, tools, and systems for data mining in fields such as science, engineering, industrial processes, healthcare, and medicine. The datasets in these fields are large, complex, and often noisy. Extracting knowledge requires the use of sophisticated, high-performance, and principled analysis techniques and algorithms, based on sound statistical foundations. These techniques in turn require powerful visualization technologies; implementations that must be carefully tuned for performance; software systems that are usable by scientists, engineers, and physicians as well as researchers; and infrastructures that support them.

Knowledge Discovery in Inductive Databases
  • Language: en
  • Pages: 276

Knowledge Discovery in Inductive Databases

  • Type: Book
  • -
  • Published: 2005
  • -
  • Publisher: Unknown

None

IEEE Intelligent Vehicles Symposium
  • Language: en
  • Pages: 1008

IEEE Intelligent Vehicles Symposium

  • Type: Book
  • -
  • Published: 2004
  • -
  • Publisher: Unknown

None