You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hesten...
This book constitutes the thoroughly refereed joint post-proceedings of the 6th International Workshop on Mathematics Mechanization, IWMM 2004, held in Shanghai, China in May 2004 and the International Workshop on Geometric Invariance and Applications in Engineering, GIAE 2004, held in Xian, China in May 2004. The 30 revised full papers presented were rigorously reviewed and selected from 65 presentations given at the two workshops. The papers are devoted to topics such as applications of computer algebra in celestial and engineering multibody systems, differential equations, computer vision, computer graphics, and the theory and applications of geometric algebra in geometric reasoning, robot vision, and computer graphics.
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applic...
This book contains the proceedings of the workshop Uncertainty in Geomet ric Computations that was held in Sheffield, England, July 5-6, 2001. A total of 59 delegates from 5 countries in Europe, North America and Asia attended the workshop. The workshop provided a forum for the discussion of com putational methods for quantifying, representing and assessing the effects of uncertainty in geometric computations. It was organised around lectures by invited speakers, and presentations in poster form from participants. Computer simulations and modelling are used frequently in science and engi neering, in applications ranging from the understanding of natural and artificial phenomena, to the desig...
This book constitutes the refereed proceedings of the 37th Computer Graphics International Conference, CGI 2020, held in Geneva, Switzerland, in October 2020. The conference was held virtually. The 43 full papers presented together with 3 short papers were carefully reviewed and selected from 189 submissions. The papers address topics such as: virtual reality; rendering and textures; augmented and mixed reality; video processing; image processing; fluid simulation and control; meshes and topology; visual simulation and aesthetics; human computer interaction; computer animation; geometric computing; robotics and vision; scientific visualization; and machine learning for graphics.
This book contains the Proceedings of the Ninth Mathematics of Surfaces Conference organised by the Institute of Mathematics and its Applications, and held in Cambridge, UK, on 4th - 6th September 2000. The papers describe the mathematical construction, representation, approximation, recognition, and manipulation of surfaces, with an emphasis on computational methods. Highlights include invited papers from M. Floater (SNTEF, Norway), O. Faugeras (INRIA, France), P. Giblin (Liverpool University, UK), M.-S. Kim (Seoul National University, Korea), J. Koenderink (University of Utrecht, Netherlands), N. Patrikalakis (MIT, USA), H. Pottmann (Technical University of Vienna, Austria) and R. Schaback (University of Göttingen, Germany).
This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. Topics and features: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the description of rigid body motion, interpolation and tracking, and image processing; reviews the employment of GA in theorem proving and combinatorics; discusses the geometric algebra of lines, lower-dimensional algebras, and other alternatives to 5-dimensional CGA; proposes applications of coordinate-free methods of GA for differential geometry.
None