You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book highlights the application of microfluidics in cell biology research, chemical biology, and drug discovery. It covers the recent breakthroughs and prospects of organ-on-a-chip, human-on-a-chip, multi-organ-on-a-chip for personalized medicine. The book presents the preclinical studies of organs-on-a-chip, concepts of multiple vascularized organ-on-chips, application of organ-on-a-chip in blood-brain barrier model, culture and co-culture of cells on multi-organ-on-chip and parameter measurements in microfluidic devices. It underscores the advantage of microfluidic devices for developing efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Further, it entails human-on-a-chip for measuring the systemic response as well as immediate effects of an organ reaction on other organs. In summary, this book reviews the development of a microfluidic-based organ-on-a-chip device for the preclinical evaluation, ADME studies of drugs, chemicals, and medical devices. This book is a valuable source for pharma companies, product developers, students, researchers, academicians, and practitioners.
Conducting polymers are versatile materials that possess both the unique properties of polymeric materials (elastic behavior, reversible deformation, flexibility, etc.) and the ability to conduct electricity with bulk conductivities comparable to those of metals and semiconductors. Conducting Polymers: Chemistries, Properties and Biomedical Applications provides current, state-of-the-art knowledge of conducting polymers and their composites for biomedical applications. This book covers the fundamentals of conducting polymers, strategies to modify the structure of conducting polymers to make them biocompatible, and their applications in various biomedical areas such as drug/gene delivery, tis...
This volume comprises selected peer-reviewed proceedings of the 12th International Conference on Signal Processing and Integrated Networks (SPIN 2025). It aims to provide a comprehensive and broad-spectrum picture of state-of-the-art research and development in signal processing, IoT sensors, systems and technologies, cloud computing, wireless communication, and wireless sensor networks. This volume will provide a valuable resource for those in academia and industry.
This book serves as a comprehensive introduction to the principles of microfluidization and its diverse applications in the food industry. It explores the use of microfluidics in processing various types of beverages derived from plant products, milk and milk products, cereal-based products, nut-based products, and meat and egg-based products. Additionally, it delves into the application of microfluidics in food micro- and nano-delivery systems, seed protein isolates, and food packaging materials. The initial chapter provides a thorough introduction to the concept of microfluidization, offering readers a comprehensive overview of the underlying principles and techniques involved in this tran...
Bioelectronics is emerging as a new area of research where electronics can selectively detect, record, and monitor physiological signals. This is a rapidly expanding area of medical research, that relies heavily on multidisciplinary technology development and cutting-edge research in chemical, biological, engineering, and physical science. This book provides extensive information on the (i) fundamental concepts of bioelectronics, (ii) materials for the developments of bioelectronics such as implantable electronics, self-powered devices, bioelectronic sensors, flexible bioelectronics, etc, and (iii) an overview of the trends and gathering of the latest bioelectronic progress. This book will broaden our knowledge about newer technologies and processes used in bioelectronics.
This book presents the select proceedings of the 5th International Conference on Recent Advancements in Mechanical Engineering (ICRAME 2024). Various topics covered in this book are thermal engineering, design engineering, manufacturing/production engineering, engineering design, novel materials for thin film solar cells, solar thermal, hydrogen, cryogenic applications, renewable energy, conventional and non-conventional machining, ergonomics, and many more. The book is useful for researchers and professionals working in the various areas of mechanical engineering.
This book addresses challenges for the development of a point-of-care-test platform. The book describes printed chip-based assay (Lab-on-a-Chip, Lab-on-a-PCB) for rapid, inexpensive biomarkers detection in real samples. The main challenges of point-of-care testing require implementing complex analytical methods into low-cost technologies. This is particularly true for countries with less developed healthcare infrastructure. Washing-free, Lab-on-Chip, and Lab-on-PCB techniques are very simple and innovative for point-of-care device development. The redox cycling technology detects several interesting targets at the same time on a printed chip. The proposed areas are inherently cross-disciplinary, combining expertise in biosensing, electrochemistry, electronics and electrical engineering, health care, and manufacturing. This book focuses on recent advances and different research issues in the nanobiotechnology-enabled biosensor technology and also seeks out theoretical, methodological, well-established, and validated empirical work dealing with these different topics.
This book represents a novel attempt to describe microbial fuel cells (MFCs) as a renewable energy source derived from organic wastes. Bioelectricity is usually produced through MFCs in oxygen-deficient environments, where a series of microorganisms convert the complex wastes into electrons via liquefaction through a cascade of enzymes in a bioelectrochemical process. The book provides a detailed description of MFC technologies and their applications, along with the theories underlying the electron transfer mechanisms, the biochemistry and the microbiology involved, and the material characteristics of the anode, cathode and separator. It is intended for a broad audience, mainly undergraduates, postgraduates, energy researchers, scientists working in industry and at research organizations, energy specialists, policymakers, and anyone else interested in the latest developments concerning MFCs.
Droplet and Digital Microfluidics: Ideation to Implementation is a detailed introduction to the dynamics of droplet and digital microfluidics, also featuring coverage of new methods and applications. The explosion of applications of microelectromechanical systems (MEMS) in recent years has driven demand for expertise and innovation in fluid flow in the microchannels they contain. In this book, detailed descriptions of methods for biological and chemical applications of microfluidics are provided, along with supporting foundational knowledge. In addition, the principles of droplet and digital microfluidics are explained, along with their different applications and governing physics.New additions to the technological knowledgebase that enable advances in droplet and digital microfluidics include machine learning and exciting future avenues for research. - Provides step-by-step fabrication, testing, and characterization instructions in each chapter to support implementation - Includes explanations of applications and methods in biological and chemical settings - Describes the path to automation of digital and droplet microfluidic platforms