You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solvin...
This book covers ideas, methods, algorithms, and tools for the in-depth study of the performance and reliability of dependable fault-tolerant systems. The chapters identify the current challenges that designers and practitioners must confront to ensure the reliability, availability, and performance of systems, with special focus on their dynamic behaviors and dependencies. Topics include network calculus, workload and scheduling; simulation, sensitivity analysis and applications; queuing networks analysis; clouds, federations and big data; and tools. This collection of recent research exposes system researchers, performance analysts, and practitioners to a spectrum of issues so that they can address these challenges in their work.
A Concise Introduction to Machine Learning uses mathematics as the common language to explain a variety of machine learning concepts from basic principles and illustrates every concept using examples in both Python and MATLAB®, which are available on GitHub and can be run from there in Binder in a web browser. Each chapter concludes with exercises to explore the content. The emphasis of the book is on the question of Why—only if “why” an algorithm is successful is understood, can it be properly applied and the results trusted. Standard techniques are treated rigorously, including an introduction to the necessary probability theory. This book addresses the commonalities of methods, aims to give a thorough and in-depth treatment and develop intuition for the inner workings of algorithms, while remaining concise. This useful reference should be essential on the bookshelf of anyone employing machine learning techniques, since it is born out of strong experience in university teaching and research on algorithms, while remaining approachable and readable.
This book presents the refereed proceedings of the 15th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held in Linz, Austria, and organized by the Johannes Kepler University Linz and the Austrian Academy of Sciences, in July 2022. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these highly active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, in particular arising in finance, statistics and computer graphics.
This book represents the refereed proceedings of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of New South Wales (Australia) in February 2012. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics and computer graphics.
Ensemble methods that train multiple learners and then combine them to use, with Boosting and Bagging as representatives, are well-known machine learning approaches. It has become common sense that an ensemble is usually significantly more accurate than a single learner, and ensemble methods have already achieved great success in various real-world tasks. Twelve years have passed since the publication of the first edition of the book in 2012 (Japanese and Chinese versions published in 2017 and 2020, respectively). Many significant advances in this field have been developed. First, many theoretical issues have been tackled, for example, the fundamental question of why AdaBoost seems resistant...
This volume presents the proceedings of the seventh annual Robotics: Science and Systems conference, held in 2011 at the University of Southern California. spans a wide spectrum of robotics, bringing together researchers working on the algorithmic or mathematical foundations of robotics, ED by Durrant-Whyte CEO of ICT Australia.
The purpose of this book is to provide a practical introduction to the th- ries, techniques and applications of image fusion. The present work has been designed as a textbook for a one-semester ?nal-year undergraduate, or ?r- year graduate, course in image fusion. It should also be useful to practising engineers who wish to learn the concepts of image fusion and apply them to practical applications. In addition, the book may also be used as a supp- mentary text for a graduate course on topics in advanced image processing. The book complements the author’s previous work on multi-sensor data [1] fusion by concentrating exclusively on the theories, techniques and app- cations of image fusion. The book is intended to be self-contained in so far as the subject of image fusion is concerned, although some prior exposure to the ?eld of computer vision and image processing may be helpful to the reader. Apart from two preliminary chapters, the book is divided into three parts.
An Advanced Course in Probability and Stochastic Processes provides a modern and rigorous treatment of probability theory and stochastic processes at an upper undergraduate and graduate level. Starting with the foundations of measure theory, this book introduces the key concepts of probability theory in an accessible way, providing full proofs and extensive examples and illustrations. Fundamental stochastic processes such as Gaussian processes, Poisson random measures, Lévy processes, Markov processes, and Itô processes are presented and explored in considerable depth, showcasing their many interconnections. Special attention is paid to martingales and the Wiener process and their central ...
Vols. for 1969- include ACTFL annual bibliography of books and articles on pedagogy in foreign languages 1969-