You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data Scientists at Work is a collection of interviews with sixteen of the world's most influential and innovative data scientists from across the spectrum of this hot new profession. "Data scientist is the sexiest job in the 21st century," according to the Harvard Business Review. By 2018, the United States will experience a shortage of 190,000 skilled data scientists, according to a McKinsey report. Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang,...
Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participa...
"Artfully explains why it is time for us to get over the false division between the human and the technical."—Tim Brown, CEO of IDEO and author of Change by Design Scott Hartley first heard the terms fuzzy and techie while studying political science at Stanford University. If you majored in humanities or social sciences, you were a fuzzy. If you majored in computer or hard sciences, you were a techie. While Silicon Valley is generally considered a techie stronghold, the founders of companies like Airbnb, Pinterest, Slack, LinkedIn, PayPal, Stitch Fix, Reddit, and others are all fuzzies—in other words, people with backgrounds in the liberal arts. In this brilliantly counterintuitive book,...
The most powerful weapon in business today is the alliance between the mathematical smarts of machines and the imaginative human intellect of great leaders. Together they make the mathematical corporation, the business model of the future. We are at a once-in-a-decade breaking point similar to the quality revolution of the 1980s and the dawn of the internet age in the 1990s: leaders must transform how they run their organizations, or competitors will bring them crashing to earth -- often overnight. Mathematical corporations -- the organizations that will master the future -- will outcompete high-flying rivals by merging the best of human ingenuity with machine intelligence. While smart machi...
The Pacific Symposium on Biocomputing (PSB) 2020 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2020 will be held on January 3 -7, 2020 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2020 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a ...
The Seventh SIAM International Conference on Data Mining (SDM 2007) continues a series of conferences whose focus is the theory and application of data mining to complex datasets in science, engineering, biomedicine, and the social sciences. These datasets challenge our abilities to analyze them because they are large and often noisy. Sophisticated, highperformance, and principled analysis techniques and algorithms, based on sound statistical foundations, are required. Visualization is often critically important; tuning for performance is a significant challenge; and the appropriate levels of abstraction to allow end-users to exploit sophisticated techniques and understand clearly both the constraints and interpretation of results are still something of an open question.
An international forum covering all areas of machine learning.
None
None