You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a single-source solution for anyone who is interested in exploring emerging reconfigurable nanotechnology at the circuit level. It lays down a solid foundation for circuits based on this technology having considered both manual as well as automated design flows. The authors discuss the entire design flow, consisting of both logic and physical synthesis for reconfigurable nanotechnology-based circuits. The authors describe how transistor reconfigurable properties can be exploited at the logic level to have a more efficient circuit design flow, as compared to conventional design flows suited for CMOS. Further, the book provides insights into hardware security features that can be intrinsically developed using the runtime reconfigurable features of this nanotechnology.
This book provides readers with a comprehensive, state-of-the-art reference for miniaturized More-than-Moore systems with a broad range of functionalities that can be added to 3D microsystems, including flexible electronics, metasurfaces and power sources. The book also includes examples of applications for brain-computer interfaces and event-driven imaging systems. Provides a comprehensive, state-of-the-art reference for miniaturized More-than-Moore systems; Covers functionalities to add to 3D microsystems, including flexible electronics, metasurfaces and power sources; Includes current applications, such as brain-computer interfaces, event - driven imaging and edge computing.
During the last few decades, crystallography has become a wide and economically important field of science with many interesting applications in materials research, in different branches of physics, chemistry, geology, pharmacology, biochemistry, electronics, in many technological processes, machinery, heavy industry, etc. Twenty Nobel prizes awarded for achieve ments belonging to this· field only underline its distinction. Crystallo graphy has become a commonly used term, but - like a whale - it is much easier to recognize than to describe because of an extreme diversity of sub jects involved which range from highly sophisticated theories to the develop ment of routine technological proces...
Nothing provided
Learn to assess electromigration reliability and design more resilient chips in this comprehensive and practical resource. Beginning with fundamental physics and building to advanced methodologies, this book enables the reader to develop highly reliable on-chip wiring stacks and power grids. Through a detailed review on the role of microstructure, interfaces and processing on electromigration reliability, as well as characterisation, testing and analysis, the book follows the development of on-chip interconnects from microscale to nanoscale. Practical modeling methodologies for statistical analysis, from simple 1D approximation to complex 3D description, can be used for step-by-step development of reliable on-chip wiring stacks and industrial-grade power/ground grids. This is an ideal resource for materials scientists and reliability and chip design engineers.
These proceedings present current research on issues related to stress-induced phenomena in on-chip metal interconnects and solder joints. The volume will appeal to scientists, engineers, graduate students interested in research and development of microelectronic devices as well as technology integration, and semiconductor industry professionals and equipment suppliers.