You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These are the proceedings of the 19th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations that arise in various problems in mathematics, computational science, engineering and industry. They are designed for massively parallel computers and take the memory hierarchy of such systems into account. This is essential for approaching peak floating point performance. There is an increasingly well-developed theory which is having a direct impact on the development and improvement of these algorithms.
This volume contains a selection of papers presented at the 21st international conference on domain decomposition methods in science and engineering held in Rennes, France, June 25-29, 2012. Domain decomposition is an active and interdisciplinary research discipline, focusing on the development, analysis and implementation of numerical methods for massively parallel computers. Domain decomposition methods are among the most efficient solvers for large scale applications in science and engineering. They are based on a solid theoretical foundation and shown to be scalable for many important applications. Domain decomposition techniques can also naturally take into account multiscale phenomena. This book contains the most recent results in this important field of research, both mathematically and algorithmically and allows the reader to get an overview of this exciting branch of numerical analysis and scientific computing.
This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).
This user-oriented guide describes state-of-the-art methods for nonlinear equations and shows, via algorithms in pseudocode and Julia with several examples, how to choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author’s Solving Nonlinear Equations with Newton’s Methods (SIAM, 2003), this book contains new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. It is supported by a Julia package and a suite of Jupyter notebooks and includes examples of nonlinear problems from many disciplines. This book is will be useful to researchers who solve nonlinear equations, students in numerical analysis, and the Julia community.
These are the proceedings of the 25th International Conference on Domain Decomposition Methods in Science and Engineering, which was held in St. John's, Newfoundland, Canada in July 2018. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2018.
These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.
Founded in 1979 works featured include a diverse range within residential office hotel institutional and industrial buildings both locally and overseas.
The Balanced Scorecard Management System has evolved from a simple management system to a fully-fledged framework for creating a strategy-focused organization. Remarkably popular in North America, Europe and Australasia, it is quickly growing in importance within Asia. This book provides a practical overview of how Asian companies are implementing balanced scorecards. In addition to over 15 case studies, the work benefits from an exclusive survey of corporate experience and input from regional and global subject experts.
None
None