You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learni...
The exponential growth of digital information available in companies and on the Web creates the need for search tools that can respond to the most sophisticated information needs. Many user tasks would be simplified if Search Engines would support typed search, and return entities instead of just Web documents. For example, an executive who tries to solve a problem needs to find people in the company who are knowledgeable about a certain topic._x000D_ In the first part of the book, we propose a model for expert finding based on the well-consolidated vector space model for Information Retrieval and investigate its effectiveness. In the second part of the book, we investigate different methods...
Provides a comprehensive account of current research in computational linguistics, Fully revised and updated throughout, including 37 new chapters, Features an extended glossary to explain key terms and concepts Book jacket.
As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage s...
Ranking - the algorithmic decision on how relevant an information artifact is for a given information need and the sorting of artifacts by their concluded relevancy - is an integral part of every search engine. In this book we investigate how structured Web data can be leveraged for ranking with the goal to improve the effectiveness of search. We propose new solutions for ranking using on-the-fly data integration and experimentally analyze and evaluate them against the latest baselines.
None