You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
First Published in 1987. This is the collected proceedings of the second International Conference on Genetic Algorithms held at the Massachusetts Institute of Technology, Cambridge, MA on the 28th to the 31st July 1987. With papers on Genetic search theory, Adaptive search operators, representation issues, connectionism and parallelism, credit assignment ad learning, and applications.
This book constitutes the refereed proceedings of the 5th International Workshop on Learning Classifier Systems, IWLCS 2003, held in Granada, Spain in September 2003 in conjunction with PPSN VII. The 10 revised full papers presented together with a comprehensive bibliography on learning classifier systems were carefully reviewed and selected during two rounds of refereeing and improvement. All relevant issues in the area are addressed.
Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.
Machine Learning
Learning classi er systems are rule-based systems that exploit evolutionary c- putation and reinforcement learning to solve di cult problems. They were - troduced in 1978 by John H. Holland, the father of genetic algorithms, and since then they have been applied to domains as diverse as autonomous robotics, trading agents, and data mining. At the Second International Workshop on Learning Classi er Systems (IWLCS 99), held July 13, 1999, in Orlando, Florida, active researchers reported on the then current state of learning classi er system research and highlighted some of the most promising research directions. The most interesting contri- tions to the meeting are included in the book Learning Classi er Systems: From Foundations to Applications, published as LNAI 1813 by Springer-Verlag. The following year, the Third International Workshop on Learning Classi er Systems (IWLCS 2000), held September 15{16 in Paris, gave participants the opportunity to discuss further advances in learning classi er systems. We have included in this volume revised and extended versions of thirteen of the papers presented at the workshop.
This book integrates fuzzy fule-languages with genetic algorithms, genetic programming, and classifier systems with the goal of obtaining fuzzy rule-based expert systems with learning capabilities. The main topics are first introduced by solving small problems, then a prototype implementation of the algorithm is explained, and last but not least the theoretical foundations are given. The second edition takes into account the rapid progress in the application of fuzzy genetic algorithms ...
The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms...
Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.